17.01.2023

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ ОБ АЛКОКСИГЛИЦЕРИДАХ И ПЛАЗМАЛОГЕНАХ В АСПЕКТЕ ПОВЫШЕНИЯ ЖИЗНЕСПОСОБНОСТИ ПРИ ПРОФИЛАКТИКЕ ДОБРОКАЧЕСТВЕННОЙ ВОЗРАСТНОЙ ЗАБЫВЧИВОСТИ

С.К. Мусиенко1, Е.И. Рыжкова 2,3, Н.А. Османова

DOI 10.24412/2312-2935-2022-5-296-322

 

Современные представления о профилактике развития доброкачественной возрастной забывчивости и другой нейродегенеративной патологии

С возрастом меняется деятельность нейротрансмиттерных систем головного мозга, в первую очередь, холинергической, серотонинергической, допаминергической, норадренергической и глютаматергической. Снижение активности этих систем влияет также на другие параметры организма. Например, при старении снижается экспрессия рецепторов головного мозга к серотонину, что приводит к возрастным нарушениям сна, снижению сексуальной активности, нарушениям настроения. Возрастное снижение продукции карнозина в ольфакторном тракте приводит к снижению памяти и снижению обоняния, что также характерно для людей старших возрастных групп [1, 34].

Окислительный стресс считается важным компонентом различных заболеваний, включая сердечно-сосудистые, неврологические и психические расстройства, такие как депрессия. К развитию когнитивного дефицита также приводит митохондриальная дисфункция, возникающая вследствие стрессовых и психо-эмоциальных перегрузок, в условиях мегаполиса, и усугубляющаяся с возрастом. Митохондриальная дисфункция приводит к увеличению продукции свободных радикалов, что активирует нуклеарный фактор каппа В, который опосредует увеличение активности хронического иммунного воспаления в области глии, что приводит к поражению ДНК глиальных клеток. Митохондриальная дисфункция ассоциирована также с увеличением активности моноаминооксидазы, что активирует оксидативный стресс, способствует накоплению липофусцина, который представляет собой нерастворимый комплекс из остатков липидов, белков, карбогидратов – остатков лизосомального метаболизма, причем липофусцин является своего рода маркером старения головного мозга. Кроме того, что по мере увеличения возраста снижается активность биохимических систем, которые удаляют избыточное количество свободных радикалов, к ним относятся ферментные системы супероксиддисмутазы, каталазы, глютатионредуктазы, это особенно ярко выражено при болезни Альцгеймера. Описанные изменения митохондриальной функции являются предпосылкой к разработке путей профилактики нейродегенеративной патологии посредством применения митохондриальных протективных препаратов и нутрицевтиков [1,2,27].

Опасность представляет собой момент, когда доброкачественная забывчивость переходит в когнитивные расстройства, которые в дальнейшем могут прогрессировать и перерасти в деменцию [1].Кроме того, было показано, что повышение уровня β-амилоида (Aβ), связанное с болезнью Альцгеймера, способствует окислительному стрессу в головном мозге, приводящему к потере функции пероксисом. Это, в свою очередь, снижает активность алкилглицеронфосфатсинтазы (AGPS – фермент, ограничивающий скорость синтеза эфирных липидов) и, в конечном счете, снижает уровень плазмалогенов [1, 29].

Плазмалогены в изобилии присутствуют в нервной системе, где они способствуют организации мембран нейронов и миелиновой оболочки. Следовательно, неудивительно, что нарушение синтеза плазмалогенов различными способами влияет на развитие неврологических заболеваний. Аномальный синтез плазмалогенов был описан при нескольких патологических состояниях, связанных с нейродегенерацией, то есть доброкачественной возрастной забывчивостью, болезнью Альцгеймера, болезнью Паркинсона и другими. Была выдвинута гипотеза о генерализованной дисфункции пероксисом на основе биохимических и гистологических данных, полученных в посмертной ткани головного мозга пациентов с болезнью Альцгеймера [37]. Было также показано, что, помимо снижения уровня плазмалогена, другие метаболические изменения, например, накопление очень длинноцепочечных жирных кислот, которые разлагаются в пероксисомах, указывают на нарушение функции пероксисом у пациентов с болезнью Альцгеймера. Примечательно, что биохимические изменения, а также объемная плотность пероксисом в соматах нейронов показали более сильную связь с нейрофибриллярными клубками, чем с невритными бляшками [40].

В нескольких недавних сообщениях предполагается, что плазмалогены обладают способностью усиливать передачу сигналов BDNF и ограничивать нейровоспаление. Это обеспечивает еще один потенциальный механизм, с помощью которого дефицит плазмалогенов может усиливать прогрессирование заболевания, поскольку как потеря нейропротекторного BDNF, так и нейровоспаление патогенетически тесно связаны с нейродегенеративными заболеваниями и доброкачественной возрастной забывчивостью [1, 39].

В нескольких масштабных работах [37, 39, 40] было обнаружено, что содержание плазмалогенов является самым низким в ткани головного мозга с наиболее выраженной невропатологией. В зависимости от области поражения головного мозга и конкретных видов плазмалогенов, отмеченный дефицит в основном составляет от 15% до 40%, что доказывается уровнем плазмалогенов в анализах крови у данных пациентов.

Фактически, было предложено несколько концепций для объяснения селективной деградации плазмалогенов при нейродегенерации. Плазмалогены преимущественно разлагаются в условиях окислительного стресса и при изменении критической температуры для разрушения мембран, которая наблюдается при вирусной и бактериальной нагрузке. Эти данные рассматриваются как ключевой компонент этиологии нейродегенерации. Другая гипотеза предполагает, что плазмалогенселективная фосфолипаза А2 стимулирует накопление амилоида, что приводит к усиленному ферментативному расщеплению плазмалогенов. Многие исследователи просто приписывают потерю плазмалогена разрушению мембран в ходе нейродегенерации, ссылаясь на измененные уровни данных биологически важных молекул в крови. Кроме того, недавнее исследование интерпретировало повышенные уровни липидов холинового эфира в сыворотке крови у пациентов с нейродегенерацией и патологически высокие уровни бета- амилоида в ликворе как признак ранней нейродегенерации, что добавляет дополнительные аспекты к выводам, связанным с плазмалогенами при нейродегенеративных заболеваниях [39].

Такие результаты были использованы в некоторых источниках для аргументации в пользу того, что плазмалогены могут выступать в качестве диагностических или прогностических биомаркеров, либо по отдельности, либо в составе группы, состоящей из нескольких видов липидов. Одно из первых исследований по этому вопросу выявило связь снижения плазмалогенов в сыворотке крови у пациентов с мультиинфарктной деменцией с высокой степенью когнитивных нарушений. До сих пор патогенетическая взаимосвязь между плазмалогенами и нарушениями развития нервной системы представляется довольно сложной, однако все больше появляется клинических работ, которые способны доказать, что применения плагмалогенов в виде нутрицетической поддержки положительно влияет на когнитивную функцию и снижает степень развития доброкачественной возрастной забывчивости [1, 41].

На сегодняшний день мало разработано стратегий для успешного устранения дефицита плазмалогенов в головном мозге, вероятно, из-за неспособности больших молекул преодолеть гематоэнцефалический барьер. С появлением гипотез о потенциальной роли дефицита плазмалогена в нейродегенеративных заболеваниях и прогрессировании доброкачественной возрастной забывчивости терапевтические варианты, нацеленные на восполнение дефицита плазминогенов, приобрели значительный интерес. Однако при обсуждении стратегий лечения, включающих пероральный прием плазмалогенов для повышения их уровня в мозге, необходимо рассмотреть три основных вопроса: беспрепятственный способ доставки в головной мозг, дозировка, и основной механизм действия [22, 42].

В нескольких недавних публикациях утверждается, что при повышении содержания плазмалогенов происходит улучшение параметров считывания, связанных с нервной системой, у пациентов с нейродегенеративными заболеваниями и доброкачественной возрастной забывчивостью [42]. В данных работах упоминается о применении нутрицевтиков, содержащих алкоксиглицериды, которые способны снижать воспалительную реакцию и приводить к увеличению уровня плазмалогенов. Одним из таких препаратов является NanoMind (свидетельство о государственной регистраиции RU 77.99.11.003.R.001446.05.22 от 04.05.2022 г., изготовитель ООО «Рубин», г. Санкт – Петербург).

Таким образом, клинические данные подтверждают положительное действие плазмалогенов на когнитивную функцию. На сегодняшний день это согласуется с более ранними систематическими исследованиями повышения уровня плазмалогенов в тканях при применении нутрицевтиков, содержащих алкилглицерины, которые легко превращаются в плазмалогены на периферии, что является актуальным и перспективным для включения в профилактические программы нейропротекции препаратов, содержащих алкилглицерины, и рекомендуется для углубленного осмысления вышеприведенных фактов нутрициологами.

Заключение. До сих пор при обсуждении участия плазмалогенов в различных сигнальных путях упоминаются широко изученные функции защиты от окислительного стресса и организации мембранной биологии. Однако, в рамках даннной статьи, мы продемонстрировали, что плазмалогены обладают огромным потенциалом для модуляции сигнальной активности различными способами. Очевидно, что трудно оценить последствия дефицита плазмалогенов при нейродегенеративных расстройствах или нарушениях развития нервной системы. Однако в настоящее время достоверным фактом является дефицит плазмалогенов в головном мозге и крови пациентов с когнитивными нарушениями.

Что касается предлагаемого использования плазмалогенов в качестве терапевтического подхода при нейродегенеративных заболеваниях и доброкачественной возрастной забывчивости, то наибольшую доказательную базу имеют недавно предложенные методики включения алкилглицеринов в качестве нутрицевтической поддержки, которые легче интегрируются в мембраны миелинизирующих клеток, что приводит к замечательным фенотипическим улучшениям в миелинизации у пациентов с дефицитом плазмалогенов, который развивается при нейродегенерации и доброкачественной возрастной забывчивости. Особенно это представляется перспективным для составления программ профилактики при когнитивных нарушениях и практически значимо для нутрициологов.

Читать статью в источнике

Список литературы:

  1. Ильницкий А.Н., Прощаев К.И. Неуязвимые. Книга о здоровье. М.: Дискурс. 2021, 336 с.
  2. Барашева Д.Е. Преждевременное старение: ненормативный кризис идентичности. Новый взгляд. Международный научный вестник. 2016; 12: 109-118.
  3. Ali F, Hossain MS, Sejimo S, Akashi K. Plasmalogens inhibit endocytosis of toll-like receptor 4 to attenuate the inflammatory signal in microglial cells. Mol Neurobiol. 2019;56(5):3404–3419.
  4. Chaithra VH, Jacob SP, Lakshmikanth CL, Sumanth MS, Abhilasha KV, Chen CH, Thyagarajan A, Sahu RP, Travers JB, McIntyre TM, Kemparaju K, Marathe GK. Modulation of inflammatory platelet-activating factor (PAF) receptor by the acyl analogue of PAF. J Lipid Res. 2018;59(11):2063–2074. 
  5.  Fabian Dorninger F.,et al. Plasmalogens, platelet-activating factor and beyond – Ether lipids in signaling and neurodegeneration// Neurobiol Dis. 2021; 1: 145-156.
  6. Dorninger F, Gundacker A, Zeitler G, Pollak DD, Berger J. Ether lipid deficiency in mice produces a complex behavioral phenotype mimicking aspects of human psychiatric disorders. Int J Mol Sci. 2019;20(16):3929. 
  7. Che H, Zhang L, Ding L, Xie W, Jiang X, Xue C, Zhang T, Wang Y. EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. Food Funct. 2020;11(2):1729–1739. 
  8. Duker AL, Niiler T, Kinderman D, Schouten M, Poll-The BT, Braverman N, Bober MB. Rhizomelic chondrodysplasia punctata morbidity and mortality, an update. Am J Med Genet A. 2020;182(3):579–583. 
  9. Duncan AR, Gonzalez DP, Del Viso F, Robson A, Khokha MK, Griffin JN. Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left-right patterning via Wnt signaling. Dev Biol. 2019;456(1):1–7. 
  10. Ebenezer DL, Fu P, Ramchandran R, Ha AW, Putherickal V, Sudhadevi T, Harijith A, Schumacher F, Kleuser B, Natarajan V. S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(7)158681. 
  11. Dean JM, Lodhi IJ. Structural and functional roles of ether lipids. Protein Cell. 2018;9(2):196–206. 
  12. Exner T, Romero-Brey I, Yifrach E, Rivera-Monroy J, Schrul B, Zouboulis CC, Stremmel W, Honsho M, Bartenschlager R, Zalckvar E, Poppelreuther M, Fullekrug J. An alternative membrane topology permits lipid droplet localization of peroxisomal fatty acyl-CoA reductase 1. J Cell Sci. 2019;132(6) jcs223016.
  13. Fontaine D, Figiel S, Felix R, Kouba S, Fromont G, Maheo K, Potier-Cartereau M, Chantome A, Vandier C. Roles of endogenous ether lipids and associated PUFAs in the regulation of ion channels and their relevance for disease. J Lipid Res. 2020;61(6):840–858. 
  14. Goodenowe DB, Senanayake V. Relation of serum plasmalogens and APOE genotype to cognition and dementia in older persons in a cross-sectional study. Brain Sci. 2019;9(4):92.
  15. Hino K, Kaneko S, Harasawa T, Kimura T, Takei S, Shinohara M, Yamazaki F, Morita SY, Sato S, Kubo Y, Kono T, Setou M, Yoshioka M, Fujino J, Sugihara H, Kojima H, Yamada N, Udagawa J. Change in brain plasmalogen composition by exposure to prenatal undernutrition leads to behavioral impairment of rats. J Neurosci. 2019;39(39):7689–7702. 
  16. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41–48. 
  17. Honsho M, Dorninger F, Abe Y, Setoyama D, Ohgi R, Uchiumi T, Kang D, Berger J, Fujiki Y. Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum. J Biochem. 2019;166(4):353–361. 
  18. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. 
  19. Jenkins CM, Yang K, Liu G, Moon SH, Dilthey BG, Gross RW. Cytochrome c is an oxidative stress-activated plasmalogenase that cleaves plasmenylcholine and plasmenylethanolamine at the sn-1 vinyl ether linkage. J Biol Chem. 2018;293(22):8693–8709. 
  20. Jimenez-Rojo N, Riezman H. On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 2019;593(17):2378–2389. 
  21. Kimura T, Kimura AK, Ren M, Berno B, Xu Y, Schlame M, Epand RM. Substantial decrease in plasmalogen in the heart associated with tafazzin deficiency. Biochemistry. 2018;57(14):2162–2175.
  22. Kono N, Arai H. Platelet-activating factor acetylhydrolases: an overview and update. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(6):922–931. 
  23. Fallatah W, Smith T, Cui W, Jayasinghe D, Di Pietro E, Ritchie SA, Braverman N. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech. 2020;13(1); 424-499. 
  24. Lebrero P, Astudillo AM, Rubio JM, Fernandez-Caballero L, Kokotos G, Balboa MA, Balsinde J. Cellular plasmalogen content does not influence arachidonic acid levels or distribution in macrophages: a role for cytosolic phospholipase A2gamma in phospholipid remodeling. Cells. 2019;8(8):799. 
  25. Kunze M. The type-2 peroxisomal targeting signal. Biochim Biophys Acta Mol Cell Res. 2020;1867(2) 118609.
  26. Okur V, Watschinger K, Niyazov D, McCarrier J, Basel D, Hermann M, Werner ER, Chung WK. Biallelic variants in AGMO with diminished enzyme activity are associated with a neurodevelopmental disorder. Hum Genet. 2019;138(11–12):1259–1266. 
  27. Malheiro AR, Correia B, Ferreira da Silva T, Bessa-Neto D, Van Veldhoven PP, Brites P. Leukodystrophy caused by plasmalogen deficiency rescued by glyceryl 1-myristyl ether treatment. Brain Pathol. 2019;29(5):622–639. 
  28. Nichols E, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106. 
  29. Paul S, Lancaster GI, Meikle PJ. Plasmalogens: a potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res. 2019;74:186–195. 
  30. Schrader M, Kamoshita M, Islinger M. Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis. 2020;43(1):71–89. 
  31.  Gallego-Garcia A, Monera-Girona AJ, Pajares-Martinez E, Bastida-Martinez E, Perez-Castano R, Iniesta AA, Fontes M, Padmanabhan S, Elias-Arnanz M. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science. 2019;366(6461):128–132.
  32. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;60(1):9–18. 
  33. Diaz M, Fabelo N, Ferrer I, Marin R. “Lipid raft aging” in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer’s disease. Neurobiol Aging. 2018;67:42–52. 
  34. Takahashi T, Honsho M, Abe Y, Fujiki Y. Plasmalogen mediates integration of adherens junction. J Biochem. 2019;166(5):423–432. 
  35. Tsukahara T. 1-O-alkyl glycerophosphate-induced CD36 expression drives oxidative stress in microglial cells. Cell Signal. 2020;65 109459.
  36. Uruno A, Matsumaru D, Ryoke R, Saito R, Kadoguchi S, Saigusa D, Saito T, Saido TC, Kawashima R, Yamamoto M. Nrf2 suppresses oxidative stress and inflammation in App knock-in Alzheimer’s disease model mice. Mol Cell Biol. 2020;40(6):e00467–00419. 
  37. Werner ER, Keller MA, Sailer S, Lackner K, Koch J, Hermann M, Coassin S, Golderer G, Werner-Felmayer G, Zoeller RA, Hulo N, Berger J, Watschinger K. The TMEM189 gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens. Proc Natl Acad Sci; U S A. 2020. pp. 7792–7798. 
  38. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148–160. 
  39. Butler M, Nelson VA, Davila H, Ratner E, Fink HA, Hemmy LS, McCarten JR, Barclay TR, Brasure M, Kane RL. Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med. 2018;168(1):52–62. 
  40. Youssef M, Ibrahim A, Akashi K, Hossain MS. PUFA-plasmalogens attenuate the LPS-induced nitric oxide production by inhibiting the NF-kB, p38 MAPK and JNK pathways in microglial cells. Neuroscience. 2019;397:18–30.
  41. Yu H, et al. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest. 2019;129(6):2485–2499. 
  42. Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJH. Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog Lipid Res. 2017;67:1–15.
↑